

James River Bacteria Study Lynchburg Area

Public Meeting

City of Lynchburg, Bedford, Campbell and Amherst Counties

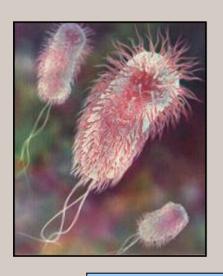
May 3, 2007

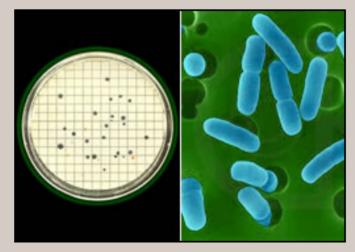
WHY ARE WE HERE?

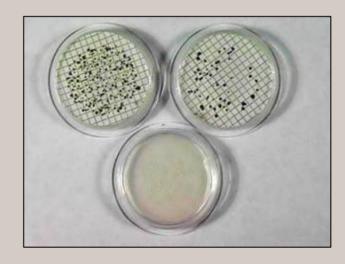
- To share the results of a study on bacteria levels in Lynchburg's streams.
- To seek your feedback and comments
- To talk about what's being done and what needs to be done in order to improve water quality.

WHAT DOES DEQ DO?

- To work with communities to restore water quality!
- To provide information and resources!

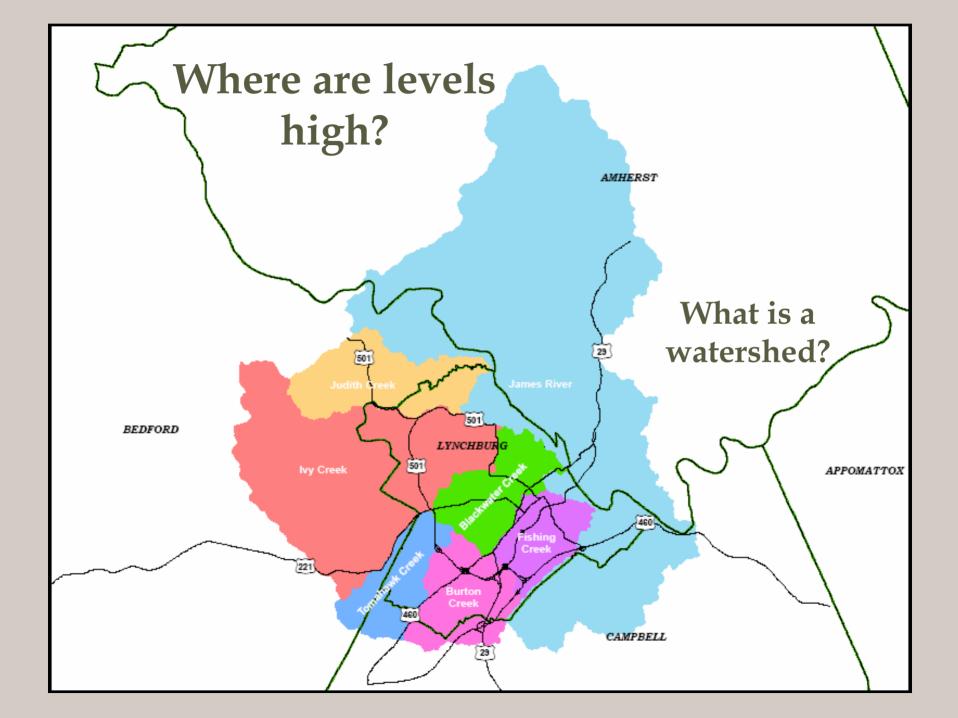






THE WATER QUALITY ISSUE

Trigger for this study:
 Elevated *E.coli* levels (> 10.5% of the time)



Correlation between bacteria concentrations and incidence of gastrointestinal illness

HOW OFTEN ARE LEVELS HIGH?

Ivy Creek	15.8%	(19 samples)
Tomahawk Creek	22.2%	(9 samples)
James River	30.6%	(44 samples)
Fishing Creek	32%	(25 samples)
Judith Creek	33.3%	(9 samples)
Burton Creek	44.4%	(9 samples)
Blackwater Creek	62.5%	(16 samples)

THE WATER QUALITY ISSUE

If bacteria levels violate State Standards more that 10.5% of the time, then we do a special study. . .

A Total Maximum Daily Load Study

A TMDL is the amount of a particular pollutant that a stream can receive and still meet Water Quality Standards.

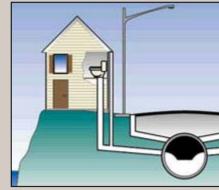
What is the <u>max amount</u> of bacteria that can be in streams and still meet standards?

This is the TMDL

By how much do we need to reduce bacteria levels in order to meet the TMDL?

TO ANSWER THESE QUESTIONS:

- 1. Form a Steering Committee.
- 2. Identify/quantify all sources of bacteria.
- 3. Develop a computer model that can calculate reductions needed from each source.


A LOT OF DATA GOES INTO THIS STUDY!

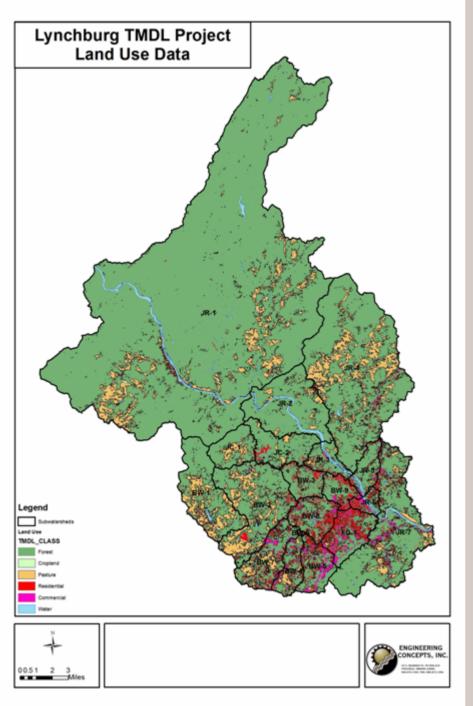
FIRST, FIND THE SOURCES

Where does this bacteria come from?

Humans
Livestock
Pets
Wildlife

BACTERIA SOURCES

Potential Source	Population in Watershed
Beef Cattle (pairs)	1,729
Horses	218
Humans	25,326
Pets	10,893
Deer	3,278
Raccoon	2,801
Muskrat	2,777
Beaver	205
Wild Turkey	386
Duck	135
Goose	560



ALL POOP IS NOT EQUAL

Source	The Equivalent Number of Sources to One Beef Cow
Human	16.92
Pet	73.33
Horse	78.57
Beef Cattle	1.00
Dairy-Milked or dry Cow	1.31
Dairy-Heifer	2.85
Sheep	1.22
Deer	95.10
Raccoon	292.04
Muskrat	1,320.00
Beaver	165,000.00
Goose	41.30
Duck	13.58
Mallard	13.58
Wild Turkey	354.84
Hog	3.06
Chicken (Layer)	242.65

LOCATIONS OF SOURCES

Land use type	Percentage
Commercial	1.3
Forest	76.6
Water/Wetland	1.3
Residential	8.4
Pasture	11.9
Cropland	0.5

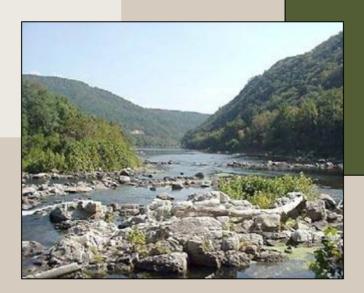
THE REPORT

It's LONG! 381 pages

Seven Chapters

Intro, Watershed Characteristics, <u>Bacteria</u> <u>Sources</u>, Modeling, <u>Reduction Scenarios</u>, <u>Implementation</u>, Public Participation

You don't need a "beautiful mind" to let us know what you think!


James River Subwatershed

Downtown Lynchburg Southern Amherst County Northern Campbell County Northside of Rivermont Avenue

To get it off the "bad" list:

100% Closure of CSOs

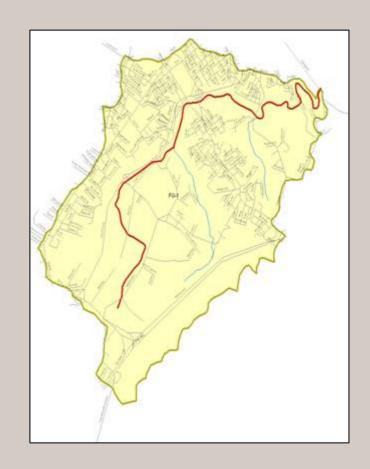
To Reach the TMDL

PLUS...
80% Reduction
from HUMANS,
PETS, AND
LIVESTOCK/
PASTURE LAND

Fishing Creek Subwatershed

Odd Fellows Road Kemper Street Fort Avenue

To get off of the bad list:


100% Removal of CSOs

To meet the TMDL:

100% Removal of CSOs and Straight Pipes

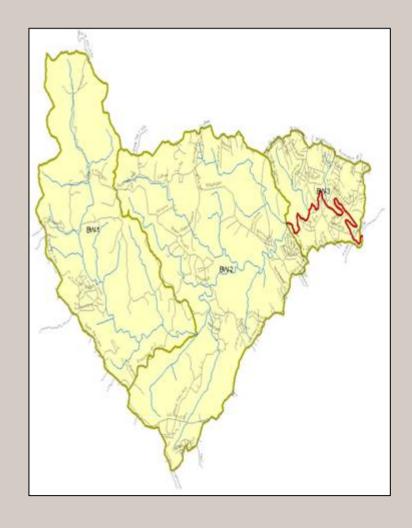
90% Removal of Livestock in Streams

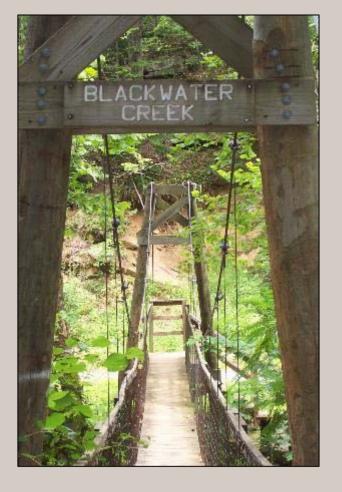
80% Reduction in Urban/Residential Areas, Cropland, Pasture

To get it off of bad list:

100% Removal of CSOs, Straight Pipes, and Livestock in Streams

75% Reduction from Urban/Residential Areas and Runoff from Pasture and Cropland


To meet TMDL:


100% Removal of CSOs and Straight Pipes

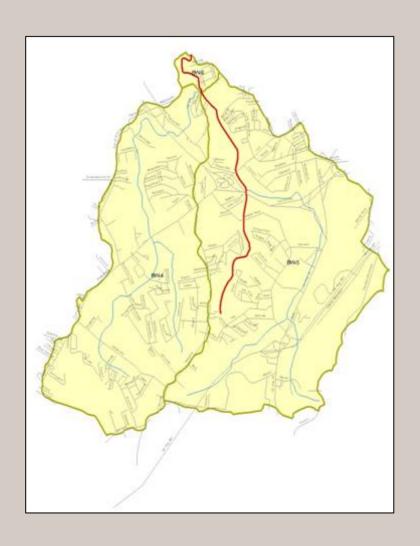
98% Reduction from Urban/Residential Areas, Livestock in Streams, Runoff from Pasture and Cropland

Ivy Creek Subwatershed

Wiggington Road Southside of Coffee Road Link Road

Blackwater Creek Subwatershed

Lakeside Drive Southside of Rivermont Avenue Hollins Mill Sandusky Drive


To get off bad list: 100% CSOs, Straight Pipes, Livestock in Streams 75% Urban/Residential, Pasture, Cropland

To meet TMDL:

100% CSOs and Straight Pipes 91% Urban/Residential, Livestock in Streams, Cropland, Pasture

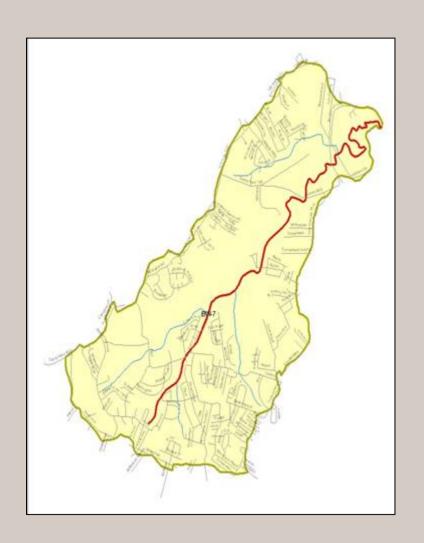
Burton Creek Subwatershed

Timberlake Road Wards Road Wards Ferry Road Greenview Drive

To get off bad list:

100% Straight Pipes, Livestock in Streams

75% Urban/Residential, Cropland and Pasture


To meet TMDL:

100% Straight Pipes

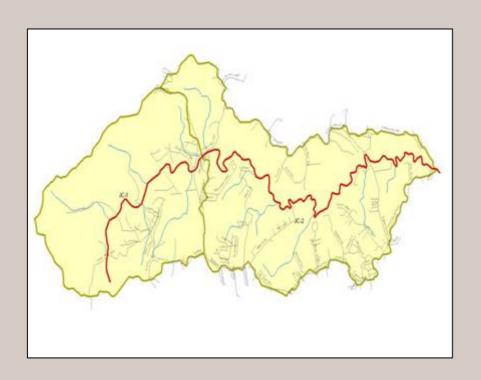
98% Urban/Residential, Livestock in Stream, Cropland and Pasture

Tomahawk Creek Subwatershed

Waterlick Road Laxton Road Graves Mill Road

To get off bad list:

100% Straight Pipes, Livestock in Stream


90% Urban/Residential, Cropland and Pasture

To Meet TMDL:

100% Straight Pipes

95% Urban/Residential, Livestock in Stream, Cropland and Pasture

Judith Creek Subwatershed

Trents Ferry Road Northside of Coffee Road 501 North

To get off bad list:

100% Straight Pipes, Livestock in Streams

50% Urban/Residential, Cropland and Pasture

To meet TMDL:

100% Straight Pipes

94% Urban/Residential, Livestock in Stream, Cropland and Pasture

HOW DO WE MAKE THESE REDUCTIONS?

Human Sources

Septic tanks, straight pipes, CSOs, rainleader disconnection

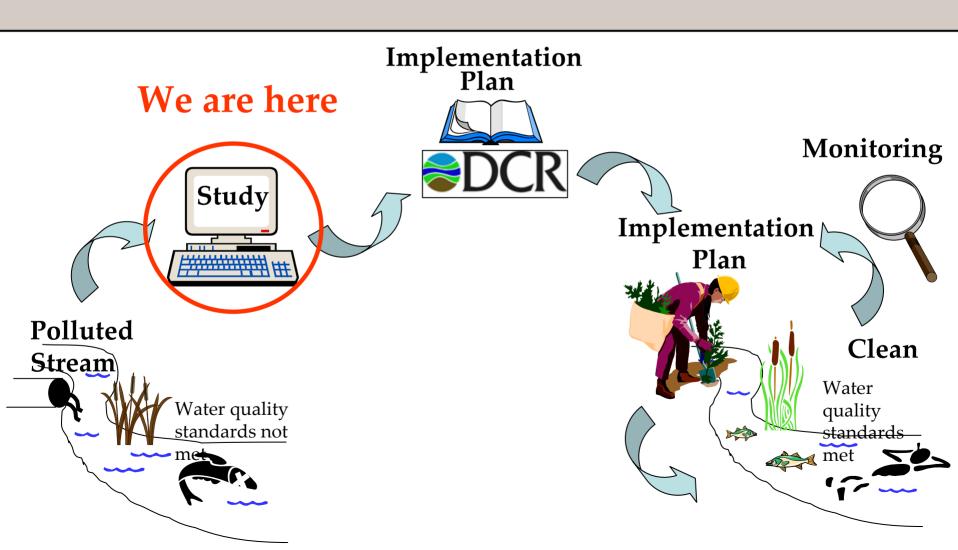
Pet Sources

Pick up the poop, composters, rain gardens

Livestock Sources

Best Management Practices (BMPs), buffers

PROTECTING OUR WATERS


- Your own backyard
- Beyond your own backyard
 - Adopt-a-Stream
 - Water quality monitoring
 - Be part of the planning process

WHAT CAN GOV'T DO TO HELP?

Submit your comments by June 4, 2007 to:

Kelly Hitchcock Regional Development Specialist VA's Region 2000 - Local Government Council 915 Main Street, Suite 202 Lynchburg, VA 24504

Phone: 434-845-3491 Fax: 434-845-3493

khitchcock@region2000.org